Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 566
Filtrar
1.
Behav Neurosci ; 138(2): 125-141, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38661671

RESUMO

Selenium is an essential trace element that is delivered to the brain by the selenium transport protein selenoprotein P (SEPP1), primarily by binding to its receptor low-density lipoprotein receptor-related protein 8 (LRP8), also known as apolipoprotein E receptor 2 (ApoER2), at the blood-brain barrier. Selenium transport is required for several important brain functions, with transgenic deletion of either Sepp1 or Lrp8 resulting in severe neurological dysfunction and death in mice fed a selenium-deficient diet. Previous studies have reported that although feeding a standard chow diet can prevent these severe deficits, some motor coordination and cognitive dysfunction remain. Importantly, no single study has directly compared the motor and cognitive performance of the Sepp1 and Lrp8 knockout (KO) lines. Here, we report the results of a comprehensive parallel analysis of the motor and spatial learning and memory function of Sepp1 and Lrp8 knockout mice fed a standard mouse chow diet. Our results revealed that Sepp1 knockout mice raised on a selenium-replete diet displayed motor and cognitive function that was indistinguishable from their wild-type littermates. In contrast, we found that although Lrp8-knockout mice fed a selenium-replete diet had normal motor function, their spatial learning and memory showed subtle deficits. We also found that the deficit in baseline adult hippocampal neurogenesis exhibited by Lrp8-deficit mice could not be rescued by dietary selenium supplementation. Taken together, these findings further highlight the importance of selenium transport in maintaining healthy brain function. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Assuntos
Proteínas Relacionadas a Receptor de LDL , Camundongos Knockout , Selênio , Aprendizagem Espacial , Animais , Camundongos , Selênio/administração & dosagem , Selênio/deficiência , Selênio/farmacologia , Aprendizagem Espacial/fisiologia , Aprendizagem Espacial/efeitos dos fármacos , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas Relacionadas a Receptor de LDL/metabolismo , Masculino , Selenoproteína P/genética , Selenoproteína P/metabolismo , Dieta , Memória Espacial/fisiologia , Memória Espacial/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Hipocampo/metabolismo , Memória/fisiologia , Memória/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Aprendizagem em Labirinto/efeitos dos fármacos
2.
Cell Mol Life Sci ; 81(1): 75, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315424

RESUMO

Autosomal dominant variants in LRP10 have been identified in patients with Lewy body diseases (LBDs), including Parkinson's disease (PD), Parkinson's disease-dementia (PDD), and dementia with Lewy bodies (DLB). Nevertheless, there is little mechanistic insight into the role of LRP10 in disease pathogenesis. In the brains of control individuals, LRP10 is typically expressed in non-neuronal cells like astrocytes and neurovasculature, but in idiopathic and genetic cases of PD, PDD, and DLB, it is also present in α-synuclein-positive neuronal Lewy bodies. These observations raise the questions of what leads to the accumulation of LRP10 in Lewy bodies and whether a possible interaction between LRP10 and α-synuclein plays a role in disease pathogenesis. Here, we demonstrate that wild-type LRP10 is secreted via extracellular vesicles (EVs) and can be internalised via clathrin-dependent endocytosis. Additionally, we show that LRP10 secretion is highly sensitive to autophagy inhibition, which induces the formation of atypical LRP10 vesicular structures in neurons in human-induced pluripotent stem cells (iPSC)-derived brain organoids. Furthermore, we show that LRP10 overexpression leads to a strong induction of monomeric α-synuclein secretion, together with time-dependent, stress-sensitive changes in intracellular α-synuclein levels. Interestingly, patient-derived astrocytes carrying the c.1424 + 5G > A LRP10 variant secrete aberrant high-molecular-weight species of LRP10 in EV-free media fractions. Finally, we show that this truncated patient-derived LRP10 protein species (LRP10splice) binds to wild-type LRP10, reduces LRP10 wild-type levels, and antagonises the effect of LRP10 on α-synuclein levels and distribution. Together, this work provides initial evidence for a possible functional role of LRP10 in LBDs by modulating intra- and extracellular α-synuclein levels, and pathogenic mechanisms linked to the disease-associated c.1424 + 5G > A LRP10 variant, pointing towards potentially important disease mechanisms in LBDs.


Assuntos
Doença por Corpos de Lewy , Doença de Parkinson , Humanos , alfa-Sinucleína/metabolismo , Doença de Parkinson/patologia , Doença por Corpos de Lewy/genética , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/patologia , Corpos de Lewy/metabolismo , Encéfalo/metabolismo , Proteínas Relacionadas a Receptor de LDL/metabolismo
3.
Philos Trans R Soc Lond B Biol Sci ; 379(1899): 20220377, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38368933

RESUMO

SORLA, the protein encoded by the SORL1 gene, has an important role in recycling cargo proteins to the cell surface. While SORLA loss-of-function variants occur almost exclusively in Alzheimer's disease cases, the majority of SORL1 variants are missense variants that are individually rare and can have individual mechanisms how they impair SORLA function as well as have individual effect size on disease risk. However, since carriers mostly come from small pedigrees, it is challenging to determine variant penetrance, leaving clinical significance associated with most missense variants unclear. In this article, we present functional approaches to evaluate the pathogenicity of a SORL1 variant, p.D1105H. First, we generated our mutant receptor by inserting the D1105H variant into the full-length SORLA-WT receptor. Then using western blot analysis we quantified the effect of the mutation on maturation and shedding of the receptor for transfected cells, and finally applied a flow cytometry approach to quantify SORLA expression at the cell surface. The results showed decreased maturation, decreased shedding, and decreased cell surface expression of D1105H compared with wild-type SORLA. We propose how these approaches can be used to functionally assess the pathogenicity of SORL1 variants in the future. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.


Assuntos
Doença de Alzheimer , Humanos , Virulência , Mutação , Doença de Alzheimer/genética , Predisposição Genética para Doença , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteínas de Membrana Transportadoras/genética
4.
Philos Trans R Soc Lond B Biol Sci ; 379(1899): 20220389, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38368935

RESUMO

The endosomal gene SORL1 is a strong Alzheimer's disease (AD) risk gene that harbours loss-of-function variants causative for developing AD. The SORL1 protein SORL1/SORLA is an endosomal receptor that interacts with the multi-protein sorting complex retromer to traffic various cargo through the endo-lysosomal network (ELN). Impairments in endo-lysosomal trafficking are an early cellular symptom in AD and a novel therapeutic target. However, the cell types of the central nervous system are diverse and use the ELN differently. If this pathway is to be effectively therapeutically targeted, understanding how key molecules in the ELN function in various cell types and how manipulating them affects cell-type specific responses relative to AD is essential. Here, we discuss an example where deficiency of SORL1 expression in a human model leads to stress on early endosomes and recycling endosomes in neurons, but preferentially leads to stress on lysosomes in microglia. The differences observed in these organelles could relate to the unique roles of these cells in the brain as neurons are professional secretory cells and microglia are professional phagocytic cells. Experiments to untangle these differences are fundamental to advancing the understanding of cell biology in AD and elucidating important pathways for therapeutic development. Human-induced pluripotent stem cell models are a valuable platform for such experiments. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Microglia/metabolismo , Lisossomos/metabolismo , Neurônios , Encéfalo/metabolismo , Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo
5.
Prog Neurobiol ; 234: 102575, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38281682

RESUMO

Adaptor protein complex 4 (AP-4) is a heterotetrameric complex that promotes export of selected cargo proteins from the trans-Golgi network. Mutations in each of the AP-4 subunits cause a complicated form of Hereditary Spastic Paraplegia (HSP). Herein, we report that ApoER2, a receptor in the Reelin signaling pathway, is a cargo of the AP-4 complex. We identify the motif ISSF/Y within the ApoER2 cytosolic domain as necessary for interaction with the canonical signal-binding pocket of the µ4 (AP4M1) subunit of AP-4. AP4E1- knock-out (KO) HeLa cells and hippocampal neurons from Ap4e1-KO mice display increased co-localization of ApoER2 with Golgi markers. Furthermore, hippocampal neurons from Ap4e1-KO mice and AP4M1-KO human iPSC-derived cortical i3Neurons exhibit reduced ApoER2 protein expression. Analyses of biosynthetic transport of ApoER2 reveal differential post-Golgi trafficking of the receptor, with lower axonal distribution in KO compared to wild-type neurons, indicating a role of AP-4 and the ISSF/Y motif in the axonal localization of ApoER2. Finally, analyses of Reelin signaling in mouse hippocampal and human cortical KO neurons show that AP4 deficiency causes no changes in Reelin-dependent activation of the AKT pathway and only mild changes in Reelin-induced dendritic arborization, but reduces Reelin-induced ERK phosphorylation, CREB activation, and Golgi deployment. This work thus establishes ApoER2 as a novel cargo of the AP-4 complex, suggesting that defects in the trafficking of this receptor and in the Reelin signaling pathway could contribute to the pathogenesis of HSP caused by mutations in AP-4 subunits.


Assuntos
Complexo 4 de Proteínas Adaptadoras , Proteínas Relacionadas a Receptor de LDL , Paraplegia Espástica Hereditária , Animais , Humanos , Camundongos , Complexo 4 de Proteínas Adaptadoras/genética , Complexo 4 de Proteínas Adaptadoras/metabolismo , Células HeLa , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas Relacionadas a Receptor de LDL/metabolismo , Receptores de Superfície Celular , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo
6.
Calcif Tissue Int ; 114(2): 171-181, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38051321

RESUMO

Pathogenic variants disrupting the binding between sclerostin (encoded by SOST) and its receptor LRP4 have previously been described to cause sclerosteosis, a rare high bone mass disorder. The sclerostin-LRP4 complex inhibits canonical WNT signaling, a key pathway regulating osteoblastic bone formation and a promising therapeutic target for common bone disorders, such as osteoporosis. In the current study, we crossed mice deficient for Sost (Sost-/-) with our p.Arg1170Gln Lrp4 knock-in (Lrp4KI/KI) mouse model to create double mutant Sost-/-;Lrp4KI/KI mice. We compared the phenotype of Sost-/- mice with that of Sost-/-;Lrp4KI/KI mice, to investigate a possible synergistic effect of the disease-causing p.Arg1170Trp variant in Lrp4 on Sost deficiency. Interestingly, presence of Lrp4KI alleles partially mitigated the Sost-/- phenotype. Cellular and dynamic histomorphometry did not reveal mechanistic insights into the observed phenotypic differences. We therefore determined the molecular effect of the Lrp4KI allele by performing bulk RNA sequencing on Lrp4KI/KI primary osteoblasts. Unexpectedly, mostly genes related to bone resorption or remodeling (Acp5, Rankl, Mmp9) were upregulated in Lrp4KI/KI primary osteoblasts. Verification of these markers in Lrp4KI/KI, Sost-/- and Sost-/-;Lrp4KI/KI mice revealed that sclerostin deficiency counteracts this Lrp4KI/KI effect in Sost-/-;Lrp4KI/KI mice. We therefore hypothesize that models with two inactivating Lrp4KI alleles rather activate bone remodeling, with a net gain in bone mass, whereas sclerostin deficiency has more robust anabolic effects on bone formation. Moreover, these effects of sclerostin and Lrp4 are stronger in female mice, contributing to a more severe phenotype than in males and more detectable phenotypic differences among different genotypes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Remodelação Óssea , Hiperostose , Sindactilia , Masculino , Feminino , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Camundongos Knockout , Fenótipo , Mutação , Remodelação Óssea/genética , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas Relacionadas a Receptor de LDL/metabolismo
7.
Mol Genet Genomic Med ; 12(1): e2319, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38013226

RESUMO

BACKGROUND: Cenani-Lenzsyndactyly syndrome (CLSS; OMIM 212780) is a rare autosomal recessive acral deformity, which is mainly manifested in the fusion of fingers or toes, disordered phalangeal structure, shortening or fusion of the radius and ulna, and renal hypoplasia. CASE PRESENTATION: Our report described an individual with mild phenotypes from China. His parents were not consanguineous. The affected individual was non-dysmorphic. Standard X-ray showed that the both hands have only four metacarpal bones. The distal end of the first metacarpal bone on the right was relatively slender, and the distal phalanx was absent. Multiple phalanges and some soft tissues of both hands were fused. Exome sequencing revealed a novel biallelic c.282C⟩Avariant in low-density lipoprotein receptor-related protein 4 (LRP4; OMIM604270; NM_002334.4) causing p. (Asn94Lys) change in the encoded protein. This variant is predicted to be potentially pathogenic, affecting protein structure and function. CONCLUSION: We report a novel missense variant present in homozygosity in LRP4 to broaden the pathogenic spectrum of LRP4 in syndactyly, and exome sequencing technology is a powerful tool for genetic analysis in prenatal diagnosis and medical research, as a preferred method for the diagnosis of syndactyly and related phenotypes.


Assuntos
Proteínas Relacionadas a Receptor de LDL , Sindactilia , Humanos , Mutação , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas Relacionadas a Receptor de LDL/metabolismo , Sindactilia/genética , Sindactilia/diagnóstico , Mutação de Sentido Incorreto
8.
Brain Res ; 1825: 148705, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38065285

RESUMO

The mechanism of action of low-density lipoprotein receptor related protein 4 (LRP4) is mediated largely via the Agrin-LRP4-MuSK signalling pathway in the nervous system. LRP4 contributes to the development of synapses in the peripheral nervous system (PNS). It interacts with signalling molecules such as the amyloid beta-protein precursor (APP) and the wingless type protein (Wnt). Its mechanisms of action are complex and mediated via interaction between the pre-synaptic motor neuron and post-synaptic muscle cell in the PNS, which enhances the development of the neuromuscular junction (NMJ). LRP4 may function differently in the central nervous system (CNS) than in the PNS, where it regulates ATP and glutamate release via astrocytes. It mayaffect the growth and development of the CNS by controlling the energy metabolism. LRP4 interacts with Agrin to maintain dendrite growth and density in the CNS. The goal of this article is to review the current studies involving relevant LRP4 signaling pathways in the nervous system. The review also discusses the clinical and etiological roles of LRP4 in neurological illnesses, such as myasthenia gravis, Alzheimer's disease and epilepsy. In this review, we provide a theoretical foundation for the pathogenesis and therapeutic application of LRP4 in neurologic diseases.


Assuntos
Agrina , Proteínas Relacionadas a Receptor de LDL , Proteínas Relacionadas a Receptor de LDL/metabolismo , Agrina/metabolismo , Peptídeos beta-Amiloides/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Junção Neuromuscular/metabolismo
9.
Cells ; 12(24)2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38132122

RESUMO

The SORL1 gene encodes LR11/SorLA, a protein that binds ß-amyloid precursor protein (APP) and drives its intracellular trafficking. SORL1 mutations, occurring frequently in a subset of familial cases of Alzheimer's disease (AD), have been documented, but their pathogenic potential is not yet clear and questions remain concerning their putative influence on the physiopathological processing of APP. We have assessed the influence of two SORL1 mutations that were described as likely disease-causing and that were associated with either benign (SorLA924) or severe (SorLA511) AD phenotypes. We examined the influence of wild-type and mutants SorLA in transiently transfected HEK293 cells expressing either wild-type or Swedish mutated APP on APP expression, secreted Aß and sAPPα levels, intracellular Aß 40 and Aß42 peptides, APP-CTFs (C99 and C83) expressions, α-, ß- and γ-secretases expressions and activities as well as Aß and CTFs-degrading enzymes. These paradigms were studied in control conditions or after pharmacological proteasomal modulation. We also established stably transfected CHO cells expressing wild-type SorLA and established the colocalization of APP and either wild-type or mutant SorLA. SorLA mutations partially disrupt co-localization of wild-type sorLA with APP. Overall, although we mostly confirmed previous data concerning the influence of wild-type SorLA on APP processing, we were unable to evidence significant alterations triggered by our set of SorLA mutants, whatever the cells or pharmacological conditions examined. Our study , however, does not rule out the possibility that other AD-linked SORL1 mutations could indeed affect APP processing, and that pathogenic mutations examined in the present study could interfere with other cellular pathways/triggers in AD.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Animais , Cricetinae , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Cricetulus , Células HEK293 , Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteínas de Membrana Transportadoras/genética , Mutação/genética
10.
Stem Cell Reports ; 18(12): 2434-2450, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-37949073

RESUMO

The SORL1 gene (SORLA) is strongly associated with risk of developing Alzheimer's disease (AD). SORLA is a regulator of endosomal trafficking in neurons and interacts with retromer, a complex that is a "master conductor" of endosomal trafficking. Small molecules can increase retromer expression in vitro, enhancing its function. We treated hiPSC-derived cortical neurons that are either fully deficient, haploinsufficient, or that harbor one copy of SORL1 variants linked to AD with TPT-260, a retromer-enhancing molecule. We show significant increases in retromer subunit VPS26B expression. We tested whether endosomal, amyloid, and TAU pathologies were corrected. We observed that the degree of rescue by TPT-260 treatment depended on the number of copies of functional SORL1 and which SORL1 variant was expressed. Using a disease-relevant preclinical model, our work illuminates how the SORL1-retromer pathway can be therapeutically harnessed.


Assuntos
Doença de Alzheimer , Proteínas Relacionadas a Receptor de LDL , Proteínas de Membrana Transportadoras , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Endossomos/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Neurônios/metabolismo
11.
Int J Mol Sci ; 24(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37895139

RESUMO

In this manuscript, we introduced a French EOAD patient in Korea who carried the presenilin-1 (PSEN1) Glu318Gly mutations with four possible risk variants, including sortilin-related receptor 1 (SORL1) Glu270Lys, ATP-binding cassette subfamily A member 7 (ABCA7) Val1946Met, translocase of outer mitochondrial membrane 40 (TOMM40) Arg239Trp, and granulin (GRN) Ala505Gly. The patient started to present memory decline and behavioral dysfunction in his early 60s. His brain imaging presented amyloid deposits by positron emission tomography (PET-CT). The multimer detection system (MDS) screening test for plasma for amyloid oligomers was also positive, which supported the AD diagnosis. It was verified that PSEN1 Glu318Gly itself may not impact amyloid production. However, additional variants were found in other AD and non-AD risk genes, as follows: SORL1 Glu270Lys was suggested as a risk mutation for AD and could increase amyloid peptide production and impair endosome functions. ABCA7 Val1946Met was a novel variant that was predicted to be damaging. The GRN Ala505Gly was a variant with uncertain significance; however, it may reduce the granulin levels in the plasma of dementia patients. Pathway analysis revealed that PSEN1 Glu318Gly may work as a risk factor along with the SORL1 and ABCA7 variants since pathway analysis revealed that PSEN1 could directly interact with them through amyloid-related and lipid metabolism pathways. TOMM40 and PSEN1 could have common mechanisms through mitochondrial dysfunction. It may be possible that PSEN1 Glu318Gly and GRN Ala505Gly would impact disease by impairing immune-related pathways, including microglia and astrocyte development, or NFkB-related pathways. Taken together, the five risk factors may contribute to disease-related pathways, including amyloid and lipid metabolism, or impair immune mechanisms.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Granulinas/metabolismo , Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteínas de Membrana Transportadoras/genética , Mutação , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Presenilina-1/genética , Presenilina-1/metabolismo , Masculino , Pessoa de Meia-Idade
12.
J Alzheimers Dis ; 94(4): 1343-1349, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424467

RESUMO

SORL1 loss of function is associated with Alzheimer's disease (AD) risk through increased Aß peptide secretion. We expressed 10 maturation-defective rare missense SORL1 variants in HEK cells and showed that decreasing growing temperature led to a significant increase in the maturation of the encoded protein SorLA for 6/10. In edited hiPSC carrying two of these variants, maturation of the protein was restored partially by decreasing the culture temperature and was associated with concomitant decrease in Aß secretion. Correcting SorLA maturation in the context of maturation-defective missense variants could thus be a relevant strategy to improve SorLA protective function against AD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas Relacionadas a Receptor de LDL/metabolismo , Mutação de Sentido Incorreto , Predisposição Genética para Doença , Proteínas de Membrana Transportadoras
13.
Cell Rep ; 42(6): 112667, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37330909

RESUMO

Dynamic regulation of integrin activation and inactivation is critical for precisely controlled cell adhesion and migration in physiological and pathological processes. The molecular basis for integrin activation has been intensively studied; however, the understanding of integrin inactivation is still limited. Here, we identify LRP12 as an endogenous transmembrane inhibitor for α4 integrin activation. The LRP12 cytoplasmic domain directly binds to the integrin α4 cytoplasmic tail and inhibits talin binding to the ß subunit, thus keeping integrin inactive. In migrating cells, LRP12-α4 interaction induces nascent adhesion (NA) turnover at the leading-edge protrusion. Knockdown of LRP12 leads to increased NAs and enhanced cell migration. Consistently, LRP12-deficient T cells show an enhanced homing capability in mice and lead to aggravated chronic colitis in a T cell-transfer colitis model. Altogether, LRP12 is a transmembrane inactivator for integrins that inhibits α4 integrin activation and controls cell migration by maintaining balanced NA dynamics.


Assuntos
Integrina alfa4 , Integrinas , Proteínas Relacionadas a Receptor de LDL , Animais , Cricetinae , Camundongos , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Células CHO , Integrina alfa4/metabolismo , Integrinas/metabolismo , Ligação Proteica , Humanos , Proteínas Relacionadas a Receptor de LDL/metabolismo
14.
Mol Neurodegener ; 18(1): 39, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37340466

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a progressive and age-associated neurodegenerative disorder that affects women disproportionally. However, the underlying mechanisms are poorly characterized. Moreover, while the interplay between sex and ApoE genotype in AD has been investigated, multi-omics studies to understand this interaction are limited. Therefore, we applied systems biology approaches to investigate sex-specific molecular networks of AD. METHODS: We integrated large-scale human postmortem brain transcriptomic data of AD from two cohorts (MSBB and ROSMAP) via multiscale network analysis and identified key drivers with sexually dimorphic expression patterns and/or different responses to APOE genotypes between sexes. The expression patterns and functional relevance of the top sex-specific network driver of AD were further investigated using postmortem human brain samples and gene perturbation experiments in AD mouse models. RESULTS: Gene expression changes in AD versus control were identified for each sex. Gene co-expression networks were constructed for each sex to identify AD-associated co-expressed gene modules shared by males and females or specific to each sex. Key network regulators were further identified as potential drivers of sex differences in AD development. LRP10 was identified as a top driver of the sex differences in AD pathogenesis and manifestation. Changes of LRP10 expression at the mRNA and protein levels were further validated in human AD brain samples. Gene perturbation experiments in EFAD mouse models demonstrated that LRP10 differentially affected cognitive function and AD pathology in sex- and APOE genotype-specific manners. A comprehensive mapping of brain cells in LRP10 over-expressed (OE) female E4FAD mice suggested neurons and microglia as the most affected cell populations. The female-specific targets of LRP10 identified from the single cell RNA-sequencing (scRNA-seq) data of the LRP10 OE E4FAD mouse brains were significantly enriched in the LRP10-centered subnetworks in female AD subjects, validating LRP10 as a key network regulator of AD in females. Eight LRP10 binding partners were identified by the yeast two-hybrid system screening, and LRP10 over-expression reduced the association of LRP10 with one binding partner CD34. CONCLUSIONS: These findings provide insights into key mechanisms mediating sex differences in AD pathogenesis and will facilitate the development of sex- and APOE genotype-specific therapies for AD.


Assuntos
Doença de Alzheimer , Feminino , Humanos , Camundongos , Masculino , Animais , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Transcriptoma , Redes Reguladoras de Genes , Apolipoproteínas E/metabolismo , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas Relacionadas a Receptor de LDL/metabolismo
15.
Cell Rep ; 42(6): 112669, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37339050

RESUMO

Reelin was originally identified as a regulator of neuronal migration and synaptic function, but its non-neuronal functions have received far less attention. Reelin participates in organ development and physiological functions in various tissues, but it is also dysregulated in some diseases. In the cardiovascular system, Reelin is abundant in the blood, where it contributes to platelet adhesion and coagulation, as well as vascular adhesion and permeability of leukocytes. It is a pro-inflammatory and pro-thrombotic factor with important implications for autoinflammatory and autoimmune diseases such as multiple sclerosis, Alzheimer's disease, arthritis, atherosclerosis, or cancer. Mechanistically, Reelin is a large secreted glycoprotein that binds to several membrane receptors, including ApoER2, VLDLR, integrins, and ephrins. Reelin signaling depends on the cell type but mostly involves phosphorylation of NF-κB, PI3K, AKT, or JAK/STAT. This review focuses on non-neuronal functions and the therapeutic potential of Reelin, while highlighting secretion, signaling, and functional similarities between cell types.


Assuntos
Moléculas de Adesão Celular Neuronais , Proteínas da Matriz Extracelular , Proteína Reelina , Humanos , Encéfalo/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Inflamação , Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de LDL/metabolismo , Serina Endopeptidases/metabolismo
16.
J Biol Chem ; 299(8): 104962, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37356721

RESUMO

Collagen Q (ColQ) is a nonfibrillar collagen that plays a crucial role at the vertebrate neuromuscular junction (NMJ) by anchoring acetylcholinesterase to the synapse. ColQ also functions in signaling, as it regulates acetylcholine receptor clustering and synaptic gene expression, in a manner dependent on muscle-specific kinase (MuSK), a key protein in NMJ formation and maintenance. MuSK forms a complex with low-density lipoprotein receptor-related protein 4 (LRP4), its coreceptor for the proteoglycan agrin at the NMJ. Previous studies suggested that ColQ also interacts with MuSK. However, the molecular mechanisms underlying ColQ functions and ColQ-MuSK interaction have not been fully elucidated. Here, we investigated whether ColQ binds directly to MuSK and/or LRP4 and whether it modulates agrin-mediated MuSK-LRP4 activation. Using coimmunoprecipitation, pull-down, plate-binding assays, and surface plasmon resonance, we show that ColQ binds directly to LRP4 but not to MuSK and that ColQ interacts indirectly with MuSK through LRP4. In addition, we show that the LRP4 N-terminal region, which contains the agrin-binding sites, is also crucial for ColQ binding to LRP4. Moreover, ColQ-LRP4 interaction was reduced in the presence of agrin, suggesting that agrin and ColQ compete for binding to LRP4. Strikingly, we reveal ColQ has two opposing effects on agrin-induced MuSK-LRP4 signaling: it constitutively reduces MuSK phosphorylation levels in agrin-stimulated myotubes but concomitantly increases MuSK accumulation at the muscle cell surface. Our results identify LRP4 as a major receptor of ColQ and provide new insights into mechanisms of ColQ signaling and acetylcholinesterase anchoring at the NMJ.


Assuntos
Acetilcolinesterase , Agrina , Colágeno , Junção Neuromuscular , Humanos , Acetilcolinesterase/metabolismo , Agrina/genética , Agrina/metabolismo , Colágeno/metabolismo , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas Relacionadas a Receptor de LDL/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Junção Neuromuscular/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo
17.
Funct Integr Genomics ; 23(2): 147, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37145301

RESUMO

Ovarian cancer (OC) has the worst prognosis among gynecological malignancies. Cisplatin (CDDP) is one of the most commonly used treatments for OC, but recurrence and metastasis are common due to endogenous or acquired resistance. High expression of ATP-binding cassette (ABC) transporters is an important mechanism of resistance to OC chemotherapy, but targeting ABC transporters in OC therapy remains a challenge. The expression of sortilin-related receptor 1 (SORL1; SorLA) in the response of OC to CDDP was determined by analysis of TCGA and GEO public datasets. Immunohistochemistry and western blotting were utilized to evaluate the expression levels of SORL1 in OC tissues and cells that were sensitive or resistant to CDDP treatment. The in vitro effect of SORL1 on OC cisplatin resistance was proven by CCK-8 and cell apoptosis assays. The subcutaneous xenotransplantation model verified the in vivo significance of SORL1 in OC. Finally, the molecular mechanism by which SORL1 regulates OC cisplatin resistance was revealed by coimmunoprecipitation, gene set enrichment analysis and immunofluorescence analysis. This study demonstrated that SORL1 is closely related to CDDP resistance and predicts a poor prognosis in OC. In vivo xenograft experiments showed that SORL1 knockdown significantly enhanced the effect of CDDP on CDDP-resistant OC cells. Mechanistically, silencing of SORL1 inhibits the early endosomal antigen 1 (EEA1) pathway, which impedes the stability of ATP-binding cassette B subfamily member 1 (ABCB1), sensitizing CDDP-resistant OC cells to CDDP. The findings of this study suggest that targeting SORL1 may represent a promising therapeutic approach for overcoming CDDP resistance in OC.


Assuntos
Cisplatino , Neoplasias Ovarianas , Humanos , Feminino , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Cisplatino/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Transportadores de Cassetes de Ligação de ATP/genética , Trifosfato de Adenosina , Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteínas Relacionadas a Receptor de LDL/farmacologia , Proteínas Relacionadas a Receptor de LDL/uso terapêutico , Proteínas de Membrana Transportadoras , Subfamília B de Transportador de Cassetes de Ligação de ATP/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/uso terapêutico
18.
Acta Biochim Biophys Sin (Shanghai) ; 55(10): 1606-1617, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37222534

RESUMO

Long noncoding RNAs (lncRNAs) have been widely proven to be involved in liver lipid homeostasis. Herein, we identify an upregulated lncRNA named lncRP11-675F6.3 in response to rapamycin treatment using a microarray in HepG2 cells. Knockdown of lncRP11-675F6. 3 leads to a significant reduction in apolipoprotein 100 (ApoB100), microsomal triglyceride transfer protein (MTTP), ApoE and ApoC3 with increased cellular triglyceride level and autophagy. Furthermore, we find that ApoB100 is obviously colocalized with GFP-LC3 in autophagosomes when lncRP11-675F6. 3 is knocked down, indicating that elevated triglyceride accumulation likely related to autophagy induces the degradation of ApoB100 and impairs very low-density lipoprotein (VLDL) assembly. We then identify and validate that hexokinase 1 (HK1) acts as the binding protein of lncRP11-675F6.3 and mediates triglyceride regulation and cell autophagy. More importantly, we find that lncRP11-675F6.3 and HK1 attenuate high fat diet induced nonalcoholic fatty liver disease (NAFLD) by regulating VLDL-related proteins and autophagy. In conclusion, this study reveals that lncRP11-675F6.3 is potentially involved in the downstream of mTOR signaling pathway and the regulatory network of hepatic triglyceride metabolism in cooperation with its interacting protein HK1, which may provide a new target for fatty liver disorder treatment.


Assuntos
Hexoquinase , Hepatopatia Gordurosa não Alcoólica , Humanos , Apolipoproteína B-100/genética , Apolipoproteína B-100/metabolismo , Autofagia , Hepatócitos/metabolismo , Hexoquinase/metabolismo , Proteínas Relacionadas a Receptor de LDL/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Triglicerídeos/metabolismo , RNA Longo não Codificante
19.
Small ; 19(20): e2207381, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36799198

RESUMO

Exosomes are promising new biomarkers for colorectal cancer (CRC) diagnosis, due to their rich biological fingerprints and high level of stability. However, the accurate detection of exosomes with specific surface receptors is limited to clinical application. Herein, an exosome enrichment platform on a 3D porous sponge microfluidic chip is constructed and the exosome capture efficiency of this chip is ≈90%. Also, deep mass spectrometry analysis followed by multi-level expression screenings revealed a CRC-specific exosome membrane protein (SORL1). A method of SORL1 detection by specific quantum dot labeling is further designed and the ensemble classification system is established by extracting features from 64-patched fluorescence images. Importantly, the area under the curve (AUC) using this system is 0.99, which is significantly higher (p < 0.001) than that using a conventional biomarker (carcinoembryonic antigen (CEA), AUC of 0.71). The above system showed similar diagnostic performance, dealing with early-stage CRC, young CRC, and CEA-negative CRC patients.


Assuntos
Neoplasias Colorretais , Exossomos , Humanos , Antígeno Carcinoembrionário , Microfluídica/métodos , Biomarcadores Tumorais/metabolismo , Exossomos/metabolismo , Porosidade , Detecção Precoce de Câncer , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/metabolismo , Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteínas de Membrana Transportadoras/metabolismo
20.
Nat Commun ; 14(1): 744, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765071

RESUMO

Proprioception is sensed by muscle spindles for precise locomotion and body posture. Unlike the neuromuscular junction (NMJ) for muscle contraction which has been well studied, mechanisms of spindle formation are not well understood. Here we show that sensory nerve terminals are disrupted by the mutation of Lrp4, a gene required for NMJ formation; inducible knockout of Lrp4 in adult mice impairs sensory synapses and movement coordination, suggesting that LRP4 is required for spindle formation and maintenance. LRP4 is critical to the expression of Egr3 during development; in adult mice, it interacts in trans with APP and APLP2 on sensory terminals. Finally, spindle sensory endings and function are impaired in aged mice, deficits that could be diminished by LRP4 expression. These observations uncovered LRP4 as an unexpected regulator of muscle spindle formation and maintenance in adult and aged animals and shed light on potential pathological mechanisms of abnormal muscle proprioception.


Assuntos
Fusos Musculares , Junção Neuromuscular , Camundongos , Animais , Fusos Musculares/metabolismo , Junção Neuromuscular/metabolismo , Células Receptoras Sensoriais , Proteínas Relacionadas a Receptor de LDL/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...